992 resultados para 130208 Mathematics and Numeracy Curriculum and Pedagogy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines preservice elementary teachers' reported experiences of posing open-ended mathematics problems. Responses of 33 students in a mathematics teacher education course were analysed for the strategies participants used, what they learned and the challenges encountered from an opportunity to collect digital images and pose open-ended problems related to those images. Results indicate that preservice teachers reported a shift in the ways they viewed mathematics and how it might be taught. The school curriculum both constrained and provided possibilities for preservice teachers in noticing mathematics beyond the textbook and mathematics classroom. This study adds to our understanding of teaching as a learning practice and the art of posing mathematical problems as a significant aspect of that practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is unprecedented worldwide demand for mathematical solutions to complex problems. That demand has generated a further call to update mathematics education in a way that develops students’ abilities to deal with complex systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes students’ developing meta-representational competence, drawn from the second phase of a longitudinal study, Transforming Children’s Mathematical and Scientific Development. A group of 21 highly able Grade 1 students was engaged in mathematics/science investigations as part of a data modelling program. A pedagogical approach focused on students’ interpretation of categorical and continuous data was implemented through researcher-directed weekly sessions over a 2-year period. Fine-grained analysis of the developmental features and explanations of their graphs showed that explicit pedagogical attention to conceptual differences between categorical and continuous data was critical to development of inferential reasoning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on a four year Australian Research Council funded Linkage Project titled Skilling Indigenous Queensland, conducted in regional areas of Queensland, Australia from 2009 to 2013. The project sought to investigate Vocational Education and Training (VET) and teaching, Indigenous learners’ needs, employer culture and expectations and community culture and expectations to identify best practice in numeracy teaching for Indigenous VET learners. Specifically it focused on ways to enhance the teaching and learning of courses and the associated mathematics in such courses to benefit learners and increase their future opportunities of employment. To date thirty - nine teachers/trainers/teacher aides and two hundred and thirty - one students consented to participate in the project. Nine VET courses offered in schools and Technical and Further Education Institutes (TAFE) were nominated to be the focus on the study. This paper focuses on student questionnaire responses and interview responses from teachers/trainers one high school principal and five students as a result of these processes, the findings indicated that VET course teachers work hard to adopt contextualising strategies to their teaching; however this process is not always straight forward because of the perceptions of how mathematics has been taught and learned by trainers and teachers. Further teachers, trainers and students have high expectations of one another with the view to successful outcomes from the courses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an approach to introducing fraction concepts using generic software tools such as Microsoft Office's PowerPoint to create "virtual" materials for mathematics teaching and learning. This approach replicates existing concrete materials and integrates virtual materials with current non-computer methods of teaching primary students about fractions. The paper reports a case study of a 12-year-old student, Frank, who had an extremely limited understanding of fractions. Frank also lacked motivation for learning mathematics in general and interacted with his peers in a negative way during mathematics lessons. In just one classroom session involving the seamless integration of off-computer and on-computer activities, Frank acquired a basic understanding of simple common equivalent fractions. Further, he was observed as the session progressed to be an enthusiastic learner who offered to share his learning with his peers. The study's "virtual replication" approach for fractions involves the manipulation of concrete materials (folding paper regions) alongside the manipulation of their virtual equivalent (shading screen regions). As researchers have pointed out, the emergence of new technologies does not mean old technologies become redundant. Learning technologies have not replaced print and oral language or basic mathematical understanding. Instead, they are modifying, reshaping, and blending the ways in which humankind speaks, reads, writes, and works mathematically. Constructivist theories of learning and teaching argue that mathematics understanding is developed from concrete to pictorial to abstract and that, ultimately, mathematics learning and teaching is about refinement and expression of ideas and concepts. Therefore, by seamlessly integrating the use of concrete materials and virtual materials generated by computer software applications, an opportunity arises to enhance the teaching and learning value of both materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on a study to measure the effectiveness of an integrated learning system (ILS) in improving mathematics achievement for low achieving Year 5 to 9 students. The study found that statistically significant gains on the integrated learning system were not supported by scores on standardised mathematics achievement tests. It also found that although student attitudes to computers decreased (significantly for some items), the students still liked the integrated learning system and felt that it had helped them to learn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generalising arithmetic structures is seen as a key to developing algebraic understanding. Many adolescent students begin secondary school with a poor understanding of the structure of arithmetic. This paper presents a theory for a teaching/learning trajectory designed to build mathematical understanding and abstraction in the elementary school context. The particular focus is on the use of models and representations to construct an understanding of equivalence. The results of a longitudinal intervention study with five elementary schools, following 220 students as they progressed from Year 2 to Year 6, informed the development of this theory. Data were gathered from multiple sources including interviews, videos of classroom teaching, and pre-and post-tests. Data reduction resulted in the development of nine conjectures representing a growth in integration of models and representations. These conjectures formed the basis of the theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased recognition of the theory in mathematics education is evident in numerous handbooks, journal articles, and other publications. For example, Silver and Herbst (2007) examined ―Theory in Mathematics Education Scholarship‖ in the Second Handbook of Research on Mathematics Teaching and Learning (Lester, 2007) while Cobb (2007) addressed ―Putting Philosophy to Work: Coping with Multiple Theoretical Perspectives‖ in the same handbook. And a central component of both the first and second editions of the Handbook of International Research in Mathematics Education (English, 2002; 2008) was ―advances in theory development.‖ Needless to say, the comprehensive second edition of the Handbook of Educational Psychology (Alexander & Winne, 2006) abounds with analyses of theoretical developments across a variety of disciplines and contexts. Numerous definitions of ―theory‖ appear in the literature (e.g., see Silver & Herbst, in Lester, 2007). It is not our intention to provide a ―one-size-fits-all‖ definition of theory per se as applied to our discipline; rather we consider multiple perspectives on theory and its many roles in improving the teaching and learning of mathematics in varied contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the 1960s, numerous studies on problem solving have revealed the complexity of the domain and the difficulty in translating research findings into practice. The literature suggests that the impact of problem solving research on the mathematics curriculum has been limited. Furthermore, our accumulation of knowledge on the teaching of problem solving is lagging. In this first discussion paper we initially present a sketch of 50 years of research on mathematical problem solving. We then consider some factors that have held back problem solving research over the past decades and offer some directions for how we might advance the field. We stress the urgent need to take into account the nature of problem solving in various arenas of today’s world and to accordingly modernize our perspectives on the teaching and learning of problem solving and of mathematical content through problem solving. Substantive theory development is also long overdue—we show how new perspectives on the development of problem solving expertise can contribute to theory development in guiding the design of worthwhile learning activities. In particular, we explore a models and modeling perspective as an alternative to existing views on problem solving.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter we review studies of the engagement of students in design projects that emphasise integration of technology practice and the enabling sciences, which include physics and mathematics. We give special attention to affective and conceptual outcomes from innovative interventions of design projects. This is important work because of growing international concern that demand for professionals with technological expertise is increasing rapidly, while the supply of students willing to undertake the rigors of study in the enabling sciences is proportionally reducing (e.g., Barringtion, 2006; Hannover & Kessels, 2004; Yurtseven, 2002). The net effect is that the shortage in qualified workers is having a detrimental effect upon economic and social potential in Westernised countries (e.g., Department of Education, Science and Training [DEST], 2003; National Numeracy Review Panel and National Numeracy Review Secretarial, 2007; Yurtseven, 2002). Interestingly, this trend is reversed in developing economies including China and India (Anderson & Gilbride, 2003).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Any theory of thinking or teaching or learning rests on an underlying philosophy of knowledge. Mathematics education is situated at the nexus of two fields of inquiry, namely mathematics and education. However, numerous other disciplines interact with these two fields which compound the complexity of developing theories that define mathematics education. We first address the issue of clarifying a philosophy of mathematics education before attempting to answer whether theories of mathematics education are constructible? In doing so we draw on the foundational writings of Lincoln and Guba (1994), in which they clearly posit that any discipline within education, in our case mathematics education, needs to clarify for itself the following questions: (1) What is reality? Or what is the nature of the world around us? (2) How do we go about knowing the world around us? [the methodological question, which presents possibilities to various disciplines to develop methodological paradigms] and, (3) How can we be certain in the “truth” of what we know? [the epistemological question]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides an interim report of a large empirical evaluation study in progress. An intervention was implemented to evaluate the effectiveness of the Pattern and Structure Mathematical Awareness Program (PASMAP) on Kindergarten students’ mathematical development. Four large schools (two from Sydney and two from Brisbane), 16 teachers and their 316 students participated in the first phase of a 2-year longitudinal study. Eight of 16 classes implemented the PASMAP program over three school terms. This paper provides an overview of key aspects of the intervention, and preliminary analysis of the impact of PASMAP on students’ representation, abstraction and generalisation of mathematical ideas.